Как облегчить себе изучение математики? Советы преподавателя

Реклама
Профессионал
С математикой у меня сложились долгие отношения. Сначала я ее учила — в спецматклассе, на семинарах и кружках; бесконечное число часов с отцом-математиком. Потом — в институте. Позже оказалась «по другую сторону баррикад» и 5 лет читала лекции в техническом вузе. Потом работала (и работаю) в институте, защитила кандидатскую. Частно преподавала.

За этом время у меня накопилось несколько возмущенных «Почему».
— Почему никто не делает вроде бы простых, «незатратных» действий, улучшающих понимание материала?
— Почему не меняется система преподавания, хотя и ошибки известны, и способы улучшения тоже?

1. ПОЧЕМУ — это Самый Главный Вопрос, который преподавателю почти никто не задаёт.
Реклама

Рассмотрим, например, тему «Неопределённый интеграл». Для неё, как и для прочих областей, имеются некие «готовые» методы. Интеграл пишется на доске, вычисления приводятся пошагово, а вы (кажется) вникаете в детали. Но, вникая, понимаете ли, ПОЧЕМУ к интегралу применяется именно этот прием? Уверены, что самостоятельно определите, когда и какой метод применить? А ведь ради этого вы пришли на лекцию… Детали вычислений можно освоить самим, понять не до конца, забыть (!). Главный Вопрос — ПОЧЕМУ. Почему делается именно так, в каких случаях можно применять этот метод, а в каких его применение является ошибкой.

2. Несколько уровней понимания.
Есть несколько уровней понимания. Первый — «контурное» понимание, умение решать задачи под руководством преподавателя. Следующий уровень достигается, когда человек самостоятельно, без подсказок может изложить тему. Проверить себя несложно. Послушайте, прочитайте или вспомните материал, который вы понимаете. Попробуйте записать его, не подсматривая в учебник. Наверняка вы столкнетесь с множеством мелких неочевидных проблем. Только найдя ответы на возникшие вопросы, вы сможете записать разумный, верный текст. Этот труд окупится, и ваше понимание материала перейдёт на новый уровень.
Реклама


3. Ясность в голове.
В точной науке математике нужно понимать, что вы делаете в каждый момент времени. О, сколько у меня было конфликтов со студентами на эту тему! К примеру, у каждого объекта есть определение. Понимаете определение? Значит, можете привести примеры объектов, ему удовлетворяющих и не удовлетворяющих. Давайте конкретнее: что такое функция? Это отображение одного множества в другое (удовлетворяющее некоторым условиям). Отображение! Не график, не набор точек, не множество, не кривулька, как мне пытались отвечать на экзаменах. Можете привести пример функции? А отображения, которое не является функцией?
Про объекты формулируются аксиомы — утверждения, верные по определению. А вот можно ли доказать аксиому («Доказано Zanussi»)? Ещё про объекты доказываются теоремы или свойства. (Непересекаемость параллельных прямых в школьной геометрии — это теорема или аксиома?)
Реклама
Ещё один камень преткновения — необходимые и достаточные условия (Наличие в треугольнике двух углов по 45 градусов — это необходимое или достаточное условие его прямоугольности? А что если в треугольнике имеется две таких соседних стороны, что сумма квадратов их длин равна квадрату длины третьей стороны; какое это условие прямоугольности треугольника?) Таких терминов немного, но их нужно понимать очень четко. Тогда освоение нового материала заметно облегчается.

4. Мне ничего не понятно.
Главному Вопросу «ПОЧЕМУ» многие предпочитают стон-выдох «непонятно». Я имею заметный стаж частного преподавания. Мои студенты нередко, прослушав новый материал, говорят: «Непонятно!» «Что непонятно?» «Ничего не понятно!» Это — леность ума.
Реклама
Прежде чем спросить, подумайте, что именно вам непонятно. Научитесь показывать своё «непонятно» пальцем. Иначе можно повторять объяснение вновь и вновь, а «непонятный» момент будет ускользать. Но есть и обратная сторона медали: если долго изучать предмет, некоторые вещи становятся столь очевидны, что преподавателю не приходит в голову их пояснять! А студенту они неясны, и тут умение «ткнуть пальцем» бывает неоценимо.

5. И последнее — учитесь математически грамотно говорить!
Это неоценимо при усвоении материала, сдаче экзаменов и т. д. Если вашу речь записать, должен (в идеале) получаться математически правильный текст. Подумайте над следующими примерами (все эти фразы я слышала многократно):
Реклама


— Таким образом, вектор равен числу…

— Что такое функция?
— Вот это (студент рисует график произвольной функции)

— Какую задачу решает алгоритм, который вы хотите мне рассказать?
— Он… производит изменения в пространстве!

— Почему из, А следует B?
— Так написано в ваших лекциях!

Единственный способ научиться говорить о сложном, который я знаю — это тренироваться. Рассказывать вслух ваши решения и новый материал человеку, который может оценить математическую грамотность. Чаще выходить к доске. Стараться обсуждать вопросы с преподавателем грамотно, а не надеясь на то, что он поймет, о чем идет речь. Если все это невозможно, то хотя бы подробно писать объяснения к решениям и конспекты лекций.
Реклама