Любое действительное число… Простите… Возможно, не все помнят, что это такое. А знаете — неважно. Как сказал дядюшка Мерфи: «Если вы не понимаете какой-либо термин в технической статье или документации, смело его пропускайте — статья полностью сохранит свой смысл и без этого термина».
Итак, попробуем ещё раз: любое число Х, кроме нуля, можно представить в виде
мантисса — это число, по модулю (то есть, без знака), не меньшее единицы и меньшее десяти, а
экспонента — любое целое число (… -3, -2, -1, 0, +1, +2, +3, …).
Ну просто эти числа так называют: одно — мантиссой, другое — экспонентой. Не нужно сильно на этом «зависать», едем дальше.
Ноль, кстати, невозможно записать таким способом, потому что мантисса, по определению, не ноль, а десятку в какую целую степень ни возводи, всё равно получится число, большее ноля, а произведение двух чисел, не равных нулю, не равно нулю.
Например,
1024 = 1.024 * 103
-3.14 = -3.14 * 100
1'000'000 = 1 * 106
Такой вид записи числа называют научным или стандартным. Он удобен, например, тем, что числа, записанные в такой нотации, удобно сравнивать: если числа имеют один и тот же знак (оба положительные или оба отрицательные), то сначала сравниваются экспоненты, и только потом, если экспоненты равны, сравниваются мантиссы.
И вот тут-то мы и подходим к ответу на вопрос, что значит «на порядок больше». Другое, более русское, название экспоненты — «порядок». Число 256 — число второго порядка, потому что 256 = 2.56 * 102. Миллион — число шестого порядка, миллиард — девятого. Вообще-то, 1024 ровно в 4 раза больше числа 256, но если необходимо просто определить, какое из них больше, вполне достаточно констатировать, что первое на порядок больше второго.
Подумаешь, скажете вы, открыл Америку! И так понятно: смотрим, какое число «длиннее» — то и больше! В общем — да. Интуитивно данное понятие уже входило в круг ваших понятий, в этой статье мы просто оформили их и придали им большую чёткость.
Ещё парочка примеров:
пять миллиардов на три порядка больше семи миллионов;
скорость чтения/записи данных на жёсткий диск (миллисекунды, 10^(-3)) на три порядка меньше скорости доступа к оперативной памяти (микросекунды, 10^(-6)).
Вот, в первом приближении, и всё. Теперь вы можете с уверенностью щеголять этим термином. Или просто употреблять его грамотно и к месту. Последнее, пожалуй, предпочтительнее.
Почему «в первом приближении»? Хм… Есть довольно известная в кругах программистов шутка: для программиста «на порядок» означает «в два раза». Почему в два? Мы же только что рассказали, что «на порядок» — это «в десять раз»? Как вам сказать… Есть один нюанс. Но это уже тема другого разговора.