Как еще можно использовать метод наименьших квадратов?

Реклама

Методом наименьших квадратов (МНК) называют метод оценки величин по результатам множества измерений, содержащим случайные ошибки.

Суть метода заключается в том, что критерием качества рассматриваемого решения является сумма квадратов ошибок, которую стремятся свести к минимуму. Для применения этого математического метода требуется провести как можно большее число измерений неизвестной случайной величины (чем больше — тем выше точность решения) и некоторое множество предполагаемых решений, из которых требуется выбрать наилучшее. Если множество решений параметризировано, то нужно найти оптимальное значение параметров.

Почему сводятся к минимуму квадраты ошибок, а не сами ошибки? Дело в том, что в большинстве случаев ошибки бывают в обе стороны: оценка может быть больше измерения или меньше его. Если складывать ошибки с разными знаками, то они будут взаимно компенсироваться, и в итоге сумма даст нам неверное представление о качестве оценки. Часто для того, чтобы итоговая оценка имела ту же размерность, что и измеряемые величины, из суммы квадратов ошибок извлекают квадратный корень.

Реклама

МНК используется в математике, в частности — в теории вероятностей и математической статистике. Наибольшее применение этот метод имеет в задачах фильтрации, когда необходимо отделить полезный сигнал от наложенного на него шума.

Его применяют и в математическом анализе для приближённого представления заданной функции более простыми функциями. Ещё одна из областей применения МНК — решение систем уравнений с количеством неизвестных меньшим, чем число уравнений.

Я придумал ещё несколько весьма неожиданных областей применения МНК, о которых хотел бы рассказать в этой статье.

МНК и опечатки

Бичом автоматических переводчиков и поисковых систем являются опечатки и орфографические ошибки. Действительно, если слово отличается всего на 1 букву, программа расценивает его уже как другое слово и переводит/ищет его неправильно или не переводит/не находит его вообще.

Реклама

У меня возникла похожая проблема: имелось две базы данных с адресами московских домов, и надо было их объединить в одну. Но адреса были записаны в разном стиле. В одной базе был стандарт КЛАДР (всероссийский классификатор адресов), например: «БАБУШКИНА ЛЕТЧИКА УЛ., Д10К3». А в другой базе был почтовый стиль, например: «Ул. Летчика Бабушкина, дом 10 корп.3». Вроде бы ошибок нет в обоих случаях, а автоматизировать процесс невероятно сложно (в каждой базе по 40 тысяч записей!). Хотя и опечаток там тоже хватало… Как дать компьютеру понять, что 2 вышеприведённых адреса принадлежат одному и тому же дому? Тут-то мне и пригодился МНК.

Что я сделал? Найдя очередную букву в первом адресе, я искал ту же букву во втором адресе. Если они обе находились на одном и том же месте, то я полагал ошибку для этой буквы равной 0. Если они располагались на соседних позициях, то ошибка была равна 1. Если имелся сдвиг на 2 позиции, ошибка равнялась 2

Реклама
и т. д. Если такой буквы вообще не имелось в другом адресе, то ошибка полагалась равной n+1, где n — число букв в 1-м адресе. Таким образом я вычислял сумму квадратов ошибок и соединял те записи, в которых эта сумма была минимальной.

Разумеется, номера домов и корпусов обрабатывались отдельно. Не знаю, изобрёл ли я очередной «велосипед», или это впрямь было новаторством, но задача была решена быстро и качественно. Интересно, применяется ли этот метод в поисковых системах? Возможно, применяется, поскольку каждый уважающий себя поисковик при встрече незнакомого слова предлагает замену из знакомых слов («возможно, вы имели в виду…»). Впрочем, они могут делать этот анализ как-то по-другому.

Реклама

МНК и поиск по картинкам, лицам и картам

Этот метод можно применить и в поиске по картинкам, чертежам, картам и даже по лицам людей.

Сейчас все поисковики, вместо поиска по картинкам, по сути, используют поиск по подписям к картинкам. Это, несомненно, полезный и удобный сервис, но я предлагаю дополнить его настоящим поиском по картинкам.

Вводится картинка-образец и для всех изображений составляется рейтинг по сумме квадратов отклонений характерных точек. Определение этих самых характерных точек есть сама по себе нетривиальная задача. Однако она вполне решаема: например, для лиц это уголки глаз, губ, кончик носа, ноздри, края и центры бровей, зрачки и т. д.

Сопоставив эти параметры, можно найти лицо, наиболее похожее на образец. Я уже видел сайты, где такой сервис работает, и вы можете найти знаменитость, наиболее похожую на предложенную вами фотографию, и даже составить анимацию, превращающую вас в знаменитость и обратно. Наверняка этот же метод работает в базах МВД, содержащих фотороботы преступников.

Да и по отпечаткам пальцев можно тем же методом делать поиск. Поиск по картам ориентируется на естественные неровности географических объектов — изгибы рек, горных хребтов, очертания берегов, лесов и полей.

Вот такой замечательный и универсальный метод МНК. Я уверен, что вы, дорогие читатели, сможете и сами найти множество необычных и неожиданных областей применения этого метода.

Реклама